\(\int \frac {\sqrt {a+c x^2}}{x (d+e x+f x^2)} \, dx\) [55]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 358 \[ \int \frac {\sqrt {a+c x^2}}{x \left (d+e x+f x^2\right )} \, dx=\frac {\left (2 a e f+(c d-a f) \left (e-\sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}-\frac {\left (2 a e f+(c d-a f) \left (e+\sqrt {e^2-4 d f}\right )\right ) \text {arctanh}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}-\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d} \]

[Out]

-arctanh((c*x^2+a)^(1/2)/a^(1/2))*a^(1/2)/d+1/2*arctanh(1/2*(2*a*f-c*x*(e-(-4*d*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+
a)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2))*(2*a*e*f+(-a*f+c*d)*(e-(-4*d*f+e^2)^(1/2)))/d*2^(
1/2)/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f-e*(-4*d*f+e^2)^(1/2)))^(1/2)-1/2*arctanh(1/2*(2*a*f-c*x*(e+(-4*d
*f+e^2)^(1/2)))*2^(1/2)/(c*x^2+a)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2))*(2*a*e*f+(-a*f+c*d
)*(e+(-4*d*f+e^2)^(1/2)))/d*2^(1/2)/(-4*d*f+e^2)^(1/2)/(2*a*f^2+c*(e^2-2*d*f+e*(-4*d*f+e^2)^(1/2)))^(1/2)

Rubi [A] (verified)

Time = 0.84 (sec) , antiderivative size = 358, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6860, 272, 52, 65, 214, 1034, 1048, 739, 212} \[ \int \frac {\sqrt {a+c x^2}}{x \left (d+e x+f x^2\right )} \, dx=\frac {\left (\left (e-\sqrt {e^2-4 d f}\right ) (c d-a f)+2 a e f\right ) \text {arctanh}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\left (\left (\sqrt {e^2-4 d f}+e\right ) (c d-a f)+2 a e f\right ) \text {arctanh}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}-\frac {\sqrt {a} \text {arctanh}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d} \]

[In]

Int[Sqrt[a + c*x^2]/(x*(d + e*x + f*x^2)),x]

[Out]

((2*a*e*f + (c*d - a*f)*(e - Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e - Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2
*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 +
 c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) - ((2*a*e*f + (c*d - a*f)*(e + Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c
*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/
(Sqrt[2]*d*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]) - (Sqrt[a]*ArcTanh[Sqrt[a
+ c*x^2]/Sqrt[a]])/d

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 1034

Int[((g_.) + (h_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[h*(a + c*x^2)^p*((d + e*x + f*x^2)^(q + 1)/(2*f*(p + q + 1))), x] + Dist[1/(2*f*(p + q + 1)), Int[(a + c*x^2)
^(p - 1)*(d + e*x + f*x^2)^q*Simp[a*h*e*p - a*(h*e - 2*g*f)*(p + q + 1) - 2*h*p*(c*d - a*f)*x - (h*c*e*p + c*(
h*e - 2*g*f)*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, g, h, q}, x] && NeQ[e^2 - 4*d*f, 0] && GtQ[
p, 0] && NeQ[p + q + 1, 0]

Rule 1048

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c
*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[
b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 6860

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {\sqrt {a+c x^2}}{d x}+\frac {(-e-f x) \sqrt {a+c x^2}}{d \left (d+e x+f x^2\right )}\right ) \, dx \\ & = \frac {\int \frac {\sqrt {a+c x^2}}{x} \, dx}{d}+\frac {\int \frac {(-e-f x) \sqrt {a+c x^2}}{d+e x+f x^2} \, dx}{d} \\ & = -\frac {\sqrt {a+c x^2}}{d}+\frac {\text {Subst}\left (\int \frac {\sqrt {a+c x}}{x} \, dx,x,x^2\right )}{2 d}+\frac {\int \frac {-a e f+f (c d-a f) x}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx}{d f} \\ & = \frac {a \text {Subst}\left (\int \frac {1}{x \sqrt {a+c x}} \, dx,x,x^2\right )}{2 d}-\frac {\left (2 a e f+(c d-a f) \left (e-\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{d \sqrt {e^2-4 d f}}+\frac {\left (2 a e f+(c d-a f) \left (e+\sqrt {e^2-4 d f}\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{d \sqrt {e^2-4 d f}} \\ & = \frac {a \text {Subst}\left (\int \frac {1}{-\frac {a}{c}+\frac {x^2}{c}} \, dx,x,\sqrt {a+c x^2}\right )}{c d}+\frac {\left (2 a e f+(c d-a f) \left (e-\sqrt {e^2-4 d f}\right )\right ) \text {Subst}\left (\int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{d \sqrt {e^2-4 d f}}-\frac {\left (2 a e f+(c d-a f) \left (e+\sqrt {e^2-4 d f}\right )\right ) \text {Subst}\left (\int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{d \sqrt {e^2-4 d f}} \\ & = \frac {\left (2 a e f+(c d-a f) \left (e-\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}-\frac {\left (2 a e f+(c d-a f) \left (e+\sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}-\frac {\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.36 (sec) , antiderivative size = 310, normalized size of antiderivative = 0.87 \[ \int \frac {\sqrt {a+c x^2}}{x \left (d+e x+f x^2\right )} \, dx=\frac {\sqrt {a} \left (-\log (x)+\log \left (-\sqrt {a}+\sqrt {a+c x^2}\right )\right )-\text {RootSum}\left [c^2 d+2 \sqrt {a} c e \text {$\#$1}-2 c d \text {$\#$1}^2+4 a f \text {$\#$1}^2-2 \sqrt {a} e \text {$\#$1}^3+d \text {$\#$1}^4\&,\frac {-a c e \log (x)+a c e \log \left (-\sqrt {a}+\sqrt {a+c x^2}-x \text {$\#$1}\right )+2 \sqrt {a} c d \log (x) \text {$\#$1}-2 a^{3/2} f \log (x) \text {$\#$1}-2 \sqrt {a} c d \log \left (-\sqrt {a}+\sqrt {a+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}+2 a^{3/2} f \log \left (-\sqrt {a}+\sqrt {a+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}+a e \log (x) \text {$\#$1}^2-a e \log \left (-\sqrt {a}+\sqrt {a+c x^2}-x \text {$\#$1}\right ) \text {$\#$1}^2}{\sqrt {a} c e-2 c d \text {$\#$1}+4 a f \text {$\#$1}-3 \sqrt {a} e \text {$\#$1}^2+2 d \text {$\#$1}^3}\&\right ]}{d} \]

[In]

Integrate[Sqrt[a + c*x^2]/(x*(d + e*x + f*x^2)),x]

[Out]

(Sqrt[a]*(-Log[x] + Log[-Sqrt[a] + Sqrt[a + c*x^2]]) - RootSum[c^2*d + 2*Sqrt[a]*c*e*#1 - 2*c*d*#1^2 + 4*a*f*#
1^2 - 2*Sqrt[a]*e*#1^3 + d*#1^4 & , (-(a*c*e*Log[x]) + a*c*e*Log[-Sqrt[a] + Sqrt[a + c*x^2] - x*#1] + 2*Sqrt[a
]*c*d*Log[x]*#1 - 2*a^(3/2)*f*Log[x]*#1 - 2*Sqrt[a]*c*d*Log[-Sqrt[a] + Sqrt[a + c*x^2] - x*#1]*#1 + 2*a^(3/2)*
f*Log[-Sqrt[a] + Sqrt[a + c*x^2] - x*#1]*#1 + a*e*Log[x]*#1^2 - a*e*Log[-Sqrt[a] + Sqrt[a + c*x^2] - x*#1]*#1^
2)/(Sqrt[a]*c*e - 2*c*d*#1 + 4*a*f*#1 - 3*Sqrt[a]*e*#1^2 + 2*d*#1^3) & ])/d

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1315\) vs. \(2(315)=630\).

Time = 0.68 (sec) , antiderivative size = 1316, normalized size of antiderivative = 3.68

method result size
default \(\text {Expression too large to display}\) \(1316\)

[In]

int((c*x^2+a)^(1/2)/x/(f*x^2+e*x+d),x,method=_RETURNVERBOSE)

[Out]

-4*f/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))*((c*x^2+a)^(1/2)-a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2)
)/x))+2*f/(e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*(1/2*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*
f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)-1
/2*c^(1/2)*(e+(-4*d*f+e^2)^(1/2))/f*ln((-1/2*c*(e+(-4*d*f+e^2)^(1/2))/f+c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))/c^
(1/2)+((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*((
-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))-1/2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^
2*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d
*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e
+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2
*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)
^(1/2))/f)))+2*f/(-e+(-4*d*f+e^2)^(1/2))/(-4*d*f+e^2)^(1/2)*(1/2*(4*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c-4*c*
(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f
^2)^(1/2)-1/2*c^(1/2)*(e-(-4*d*f+e^2)^(1/2))/f*ln((-1/2*c*(e-(-4*d*f+e^2)^(1/2))/f+c*(x-1/2/f*(-e+(-4*d*f+e^2)
^(1/2))))/c^(1/2)+((x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^
(1/2)))+1/2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))-1/2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2
*c*d*f+c*e^2)/f^2*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)
*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+1/2*2^(1/2)*((-(-
4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))^2*c-4*c*(e-(-4*d*f
+e^2)^(1/2))/f*(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))
/(x-1/2/f*(-e+(-4*d*f+e^2)^(1/2)))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1127 vs. \(2 (313) = 626\).

Time = 24.10 (sec) , antiderivative size = 2266, normalized size of antiderivative = 6.33 \[ \int \frac {\sqrt {a+c x^2}}{x \left (d+e x+f x^2\right )} \, dx=\text {Too large to display} \]

[In]

integrate((c*x^2+a)^(1/2)/x/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

[-1/4*(sqrt(2)*d*sqrt((2*c*d^2 + a*e^2 - 2*a*d*f + (d^2*e^2 - 4*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2
*e^2 - 4*d^3*f))*log((2*a*c*d*e*x - a^2*e^2 + sqrt(2)*(d^3*e^2 - 4*d^4*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f))*sq
rt(c*x^2 + a)*sqrt((2*c*d^2 + a*e^2 - 2*a*d*f + (d^2*e^2 - 4*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^
2 - 4*d^3*f)) - (a*d^2*e^2 - 4*a*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/x) - sqrt(2)*d*sqrt((2*c*d^2 + a*e^
2 - 2*a*d*f + (d^2*e^2 - 4*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^2 - 4*d^3*f))*log((2*a*c*d*e*x - a
^2*e^2 - sqrt(2)*(d^3*e^2 - 4*d^4*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f))*sqrt(c*x^2 + a)*sqrt((2*c*d^2 + a*e^2 -
 2*a*d*f + (d^2*e^2 - 4*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^2 - 4*d^3*f)) - (a*d^2*e^2 - 4*a*d^3*
f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/x) - sqrt(2)*d*sqrt((2*c*d^2 + a*e^2 - 2*a*d*f - (d^2*e^2 - 4*d^3*f)*sqr
t(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^2 - 4*d^3*f))*log((2*a*c*d*e*x - a^2*e^2 + sqrt(2)*(d^3*e^2 - 4*d^4*f)*
sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f))*sqrt(c*x^2 + a)*sqrt((2*c*d^2 + a*e^2 - 2*a*d*f - (d^2*e^2 - 4*d^3*f)*sqrt(a
^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^2 - 4*d^3*f)) + (a*d^2*e^2 - 4*a*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))
/x) + sqrt(2)*d*sqrt((2*c*d^2 + a*e^2 - 2*a*d*f - (d^2*e^2 - 4*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*
e^2 - 4*d^3*f))*log((2*a*c*d*e*x - a^2*e^2 - sqrt(2)*(d^3*e^2 - 4*d^4*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f))*sqr
t(c*x^2 + a)*sqrt((2*c*d^2 + a*e^2 - 2*a*d*f - (d^2*e^2 - 4*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^2
 - 4*d^3*f)) + (a*d^2*e^2 - 4*a*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/x) - 2*sqrt(a)*log(-(c*x^2 - 2*sqrt(
c*x^2 + a)*sqrt(a) + 2*a)/x^2))/d, -1/4*(sqrt(2)*d*sqrt((2*c*d^2 + a*e^2 - 2*a*d*f + (d^2*e^2 - 4*d^3*f)*sqrt(
a^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^2 - 4*d^3*f))*log((2*a*c*d*e*x - a^2*e^2 + sqrt(2)*(d^3*e^2 - 4*d^4*f)*sq
rt(a^2*e^2/(d^4*e^2 - 4*d^5*f))*sqrt(c*x^2 + a)*sqrt((2*c*d^2 + a*e^2 - 2*a*d*f + (d^2*e^2 - 4*d^3*f)*sqrt(a^2
*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^2 - 4*d^3*f)) - (a*d^2*e^2 - 4*a*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/x
) - sqrt(2)*d*sqrt((2*c*d^2 + a*e^2 - 2*a*d*f + (d^2*e^2 - 4*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^
2 - 4*d^3*f))*log((2*a*c*d*e*x - a^2*e^2 - sqrt(2)*(d^3*e^2 - 4*d^4*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f))*sqrt(
c*x^2 + a)*sqrt((2*c*d^2 + a*e^2 - 2*a*d*f + (d^2*e^2 - 4*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^2 -
 4*d^3*f)) - (a*d^2*e^2 - 4*a*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/x) - sqrt(2)*d*sqrt((2*c*d^2 + a*e^2 -
 2*a*d*f - (d^2*e^2 - 4*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^2 - 4*d^3*f))*log((2*a*c*d*e*x - a^2*
e^2 + sqrt(2)*(d^3*e^2 - 4*d^4*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f))*sqrt(c*x^2 + a)*sqrt((2*c*d^2 + a*e^2 - 2*
a*d*f - (d^2*e^2 - 4*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^2 - 4*d^3*f)) + (a*d^2*e^2 - 4*a*d^3*f)*
sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/x) + sqrt(2)*d*sqrt((2*c*d^2 + a*e^2 - 2*a*d*f - (d^2*e^2 - 4*d^3*f)*sqrt(a
^2*e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^2 - 4*d^3*f))*log((2*a*c*d*e*x - a^2*e^2 - sqrt(2)*(d^3*e^2 - 4*d^4*f)*sqr
t(a^2*e^2/(d^4*e^2 - 4*d^5*f))*sqrt(c*x^2 + a)*sqrt((2*c*d^2 + a*e^2 - 2*a*d*f - (d^2*e^2 - 4*d^3*f)*sqrt(a^2*
e^2/(d^4*e^2 - 4*d^5*f)))/(d^2*e^2 - 4*d^3*f)) + (a*d^2*e^2 - 4*a*d^3*f)*sqrt(a^2*e^2/(d^4*e^2 - 4*d^5*f)))/x)
 - 4*sqrt(-a)*arctan(sqrt(-a)/sqrt(c*x^2 + a)))/d]

Sympy [F]

\[ \int \frac {\sqrt {a+c x^2}}{x \left (d+e x+f x^2\right )} \, dx=\int \frac {\sqrt {a + c x^{2}}}{x \left (d + e x + f x^{2}\right )}\, dx \]

[In]

integrate((c*x**2+a)**(1/2)/x/(f*x**2+e*x+d),x)

[Out]

Integral(sqrt(a + c*x**2)/(x*(d + e*x + f*x**2)), x)

Maxima [F]

\[ \int \frac {\sqrt {a+c x^2}}{x \left (d+e x+f x^2\right )} \, dx=\int { \frac {\sqrt {c x^{2} + a}}{{\left (f x^{2} + e x + d\right )} x} \,d x } \]

[In]

integrate((c*x^2+a)^(1/2)/x/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + a)/((f*x^2 + e*x + d)*x), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+c x^2}}{x \left (d+e x+f x^2\right )} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((c*x^2+a)^(1/2)/x/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:index.cc index_m i_lex_is_greater Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+c x^2}}{x \left (d+e x+f x^2\right )} \, dx=\int \frac {\sqrt {c\,x^2+a}}{x\,\left (f\,x^2+e\,x+d\right )} \,d x \]

[In]

int((a + c*x^2)^(1/2)/(x*(d + e*x + f*x^2)),x)

[Out]

int((a + c*x^2)^(1/2)/(x*(d + e*x + f*x^2)), x)